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Overview

Continuous functions of two variables assume extreme values on closed,
bounded domains. We discuss in the lecture that we can narrow the search
for these extreme values by examining the functions’ first partial
derivatives.

A function of two variables can assume extreme values only at domain
boundary points or at interior domain points where both first partial
derivatives are zero or where one or both of the first partial derivatives fail
to exist.

However, the vanishing of derivatives at an interior point (a, b) does not
always signal the presence of an extreme value. The surface that is the
graph of the function might be shaped like a saddle right above (a, b) and
cross its tangent plane there.
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Continuous functions of two variables assume extreme
values on closed, bounded domains.

The function z = (cos x)(cos y)e−
√

x2+y2
has a maximum value of 1 and a

minimum value of about −0.067 on the square region |x | ≤ 3π/2,
|y | ≤ 3π/2.
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Continuous functions of two variables assume extreme
values on closed, bounded domains.

The roof surface z = 1
2 (| |x | − |y | | − |x | − |y |) has a maximum value of

0 and a minimum value of −a on the square region |x | ≤ a, |y | ≤ a.
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Derivative Tests for Local Extreme Values

To find the local extreme values of a function of a single variable, we look
for points where the graph has a horizontal tangent line.

At such points, we then look for local maxima, local minima, and
points of inflection.

For a function f (x , y) of two variables, we look for points where the
surface z = f (x , y) has a horizontal tangent plane.

At such points, we then look for local maxima, local minima, and saddle
points.

P. Sam Johnson Extreme Values and Saddle Points 5/81



Maxima and Minima

We begin by defining maxima and minima.

Definition 1.

Let f (x , y) be defined on a region R containing the point (a, b). Then

1. f (a, b) is a local maximum value of f if f (a, b) ≥ f (x , y) for all
domain points (x , y) in an open disk centered at (a, b).

2. f (a, b) is a local minimum value of f if f (a, b) ≤ f (x , y) for all
domain points (x , y) in an open disk centered at (a, b).
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Maxima and Minima
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Maxima and Minima

Local maxima correspond to mountain peaks on the surface z = f (x , y)
and local minima correspond to valley bottoms.

At such points the tangent planes, when they exist, are horizontal. Local
extrema are also called relative extrema.
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First Derivative Test for Local Extreme Values

As with functions of a single variable, the key to identifying the local
extrema is a first derivative test.

Theorem 2 (First Derivative Test for Local Extreme Values).

If f (x , y) has a local maximum or minimum value at an interior point
(a, b) of its domain and if the first partial derivatives exist there, then

fx(a, b) = 0 and fy (a, b) = 0.

If a local maximum of f occurs at x = a, y = b, then the first partial
derivatives fx(a, b) and fy (a, b) are both zero.
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Proof

If f has a local extremum at (a, b), then the function g(x) = f (x , b) has a
local extremum at x = a. Therefore, g ′(a) = 0.

Now g ′(a) = fx(a, b), so fx(a, b) = 0. A similar argument with the
function h(y) = f (a, y) shows that fy (a, b) = 0.
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First Derivative Test for Local Extreme Values

If we substitute the values fx(a, b) = 0 and fy (a, b) = 0 into the equation

fx(a, b)(x − a) + fy (a, b)(y − b)− (z − f (a, b)) = 0

for the tangent plane to the surface z = f (x , y) at (a, b), the equation
reduces to

0 · (x − a) + 0 · (y − b)− z + f (a, b) = 0

or

z = f (a, b).

Thus, Theorem (2) says that the surface does indeed have a horizontal
tangent plane at a local extremum, provided there is a tangent plane there.
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Critical Points

Definition 3.

An interior point of the domain of a function f (x , y) where both fx and fy
are zero or where one or both of fx and fy do not exist is a critical point of
f .

Theorem (2) says that the only points where a function f (x , y) can
assume extreme values are critical points and boundary points.

As with differentiable functions of a single variable, not every critical point
gives rise to a local extremum. A differentiable function of a single variable
might have a point of inflection.

A differentiable function of two variables might have a saddle point.

P. Sam Johnson Extreme Values and Saddle Points 12/81



Saddle points at the origin
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Saddle Points

Definition 4.

A differentiable function f (x , y) has a saddle point at a critical point (a, b)
if in every open disk centered at (a, b) there are domain points (x , y)
where f (x , y) > f (a, b) and domain points (x , y) where f (x , y) < f (a, b).

The corresponding point (a, b, f (a, b)) on the surface z = f (x , y) is called
a saddle point of the surface.

Example 5.

Find the local extreme values of f (x , y) = x2 + y2 − 4y + 9.
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Solution

The domain of f is the entire plane (so there are no boundary points) and
the partial derivatives fx = 2x and fy = 2y − 4 exist everywhere.
Therefore, local extreme values can occur only where

fx = 2x = 0 and fy = 2y − 4 = 0.

The only possibility is the point (0, 2), where the value of f is 5. Since
f (x , y) = x2 + (y − 2)2 + 5 is never less than 5, we see that the critical
point (0, 2) gives a local minimum.
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Example

Example 6.

Find the local extreme values (if any) of f (x , y) = y2 − x2.

Solution : The domain of f is the entire plane (so there are no boundary
points) and the partial derivatives fx = −2x and fy = 2y exist everywhere.

Therefore, local extrema can occur only at the origin (0,0) where fx = 0
and fy = 0.

Along the positive x-axis, however, f has the value f (x , 0) = −x2 < 0;

along the positive y -axis, f has the value f (0, y) = y2 > 0.
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Solution (contd...)

Therefore, every open disk in the xy -plane centered at (0,0) contains
points where the function is positive and points where it is negative. The
function has a saddle point at the origin and no local extreme values (see
the following figure).
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Solution (contd...)

The following figure displays the level curves (they are hyperbolas) of f ,
and shows the function decreasing and increasing in an alternative fashion
among the four groupings of hyperbolas.
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Example

A contour map of the function f = x4 + y4 − 4xy + 1 is shown in the following figure. The level

curves near (1, 1) and (−1,−1) are oval in shape and indicate that as we move away from (1, 1)

or (−1,−1) in any direction the values of f are increasing. The level curves near (0, 0), on the

other hand, resemble hyperbolas. They reveal that as we move away from the origin (where the

value of f is 1), the values of f decrease in some directions but increase in other directions.

Thus the contour map suggests the presence of the minima and a saddle point.
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Remark

That fx = fy = 0 at an interior point (a,b) of R does not guarantee f has
a local extreme value there.

If f and its first and second partial derivatives are continuous on R,
however, we may be able to learn more from the following theorem.
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Second Derivative Test for Local Extreme Values

Theorem 7 (Second Derivative Test for Local Extreme
Values).

Suppose that f (x , y) and its first and second partial derivatives are
continuous throughout a disk centered at (a, b) and that
fx(a, b) = fy (a, b) = 0. Then

i) f has a local maximum at (a, b) if fxx < 0 and fxx fyy − fxy
2 > 0 at

(a, b).

ii) f has a local minimum at (a, b) if fxx > 0 and fxx fyy − fxy
2 > 0 at

(a, b).

iii) f has a saddle point at (a, b) if fxx fyy − fxy
2 < 0 at (a, b).

iv) the test is inconclusive at (a, b) if fxx fyy − fxy
2 = 0 at (a, b). In this

case, we must find some other way to determine the behavior of f at
(a, b).
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Second Derivative Test for Local Extreme Values

The expression fxx fyy − fxy
2 is called the discriminant or Hessian of f . It

is sometimes easier to remember it in determinant form,

fxx fyy − fxy
2 =

∣∣∣∣fxx fxy
fxy fyy

∣∣∣∣ .
Theorem (7) says that if the discriminant is positive at the point (a, b),
then the surface curves the same way in all directions : downward if
fxx < 0, giving rise to a local maximum, and upward if fxx > 0, giving a
local minimum.

On the other hand, if the discriminant is negative at (a, b), then the
surface curves up in some directions and down in others, so we have a
saddle point.
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Example

Example 8.

Find the local extreme values of the function

f (x , y) = xy − x2 − y2 − 2x − 2y + 4.

Solution : The function is defined and differentiable for all x and y and
its domain has no boundary points. The function therefore has extreme
values only at the points where fx and fy are simultaneously zero. This
leads to

fx = y − 2x − 2 = 0, fy = x − 2y − 2 = 0,

or

x = y = −2.
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Solution (contd...)

Therefore, the point (−2,−2) is the only point where f may take on an
extreme value. To see if it does so, we calculate

fxx = −2, fyy = −2, fxy = 1.

The discriminant of f at (a, b) = (−2,−2) is

fxx fyy − fxy
2 = (−2)(−2)− (1)2 = 4− 1 = 3.

The combination

fxx < 0 and fxx fyy − fxy
2 > 0

tells us that f has a local maximum at (-2,-2). The value of f at this
point is f (−2,−2) = 8.
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Example

Example 9.

Find the local extreme values of f (x , y) = 3y2 − 2y3 − 3x2 + 6xy .

Solution : Since f is differentiable everywhere, it can assume extreme
values only where

fx = 6y − 6x = 0 and fy = 6y − 6y2 + 6x = 0.

From the first of these equations we find x = y , and substitution for y into
the second equation then gives

6x − 6x2 + 6x = 0 or 6x(2− x) = 0.

The two critical points are therefore (0, 0) and (2, 2). To classify the
critical points, we calculate the second derivatives :

fxx = −6, fyy = 6− 12y , fxy = 6.
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Solution (contd...)

The discriminant is given by

fxx fyy − fxy
2 = (−36 + 72y)− 36 = 72(y − 1).

At the critical point (0, 0) we see that the value of the discriminant is the
negative number −72, so the function has a saddle point at the origin.

At the critical point (2, 2) we see that the discriminant has the positive
value 72.

Combining this result with the negative value of the second partial
fxx = −6, Theorem (7) says that the critical point (2, 2) gives a local
maximum value of f (2, 2) = 12− 16− 12 + 24 = 8.
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Solution (contd...)

A graph of the surface is shown in the following figure.

The surface z = 3y2 − 2y3 − 3x2 + 6xy has a saddle point at the origin
and a local maximum at the point (2, 2).
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Absolute Maxima and Minima on Closed Bounded Regions

We organize the search for the absolute extrema of a continuous function
f (x , y) on a closed and bounded region R into three steps.

1. List the interior points of R where f may have local maxima and
minima and evaluate f at these points. These are the critical points
of f .

2. List the boundary points of R where f has local maxima and minima
and evaluate f at these points. We show how to do this shortly.

3. Look through the lists for the maximum and minimum values of f .
These will be the absolute maximum and minimum values of f on R.
Since absolute maxima and minima are also local maxima and
minima, the absolute maximum and minimum values of f appear
somewhere in the lists made in Steps 1 and 2.
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Example

Example 10.

Find the absolute maximum and minimum values of

f (x , y) = 2 + 2x + 2y − x2 − y2

on the triangular region in the first quadrant bounded by the lines
x = 0, y = 0, y = 9− x .

Solution : Since f is differentiable, the only places where f can assume
these values are points inside the triangle where fx = fy = 0 and points on
the boundary.
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Solution (contd...)

This triangular region is the domain of the function

(a) Interior points : For these we have

fx = 2− 2x = 0, fy = 2− 2y = 0,

yielding the single point (x , y) = (1, 1). The values of f there is

f (1, 1) = 4.
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Solution (contd...)

(b) Boundary points : We take the triangle one side at a time:

(i) On the segment OA, y = 0. The function

f (x , y) = f (x , 0) = 2 + 2x − x2

may now be regarded as a function of x defined on the closed interval
0 ≤ x ≤ 9. Its extreme values may occur at the endpoints

x = 0 where f (0, 0) = 2

x = 9 where f (9, 0) = 2 + 18− 81 = −61

and at interior points where f ′(x , 0) = 2− 2x = 0. The only interior point
where f ′(x , 0) = 0 is x = 1, where

f (x , 0) = f (1, 0) = 3.
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Solution (contd...)

(ii) On the segment OB, x = 0 and

f (x , y) = f (0, y) = 2 + 2y − y2.

We know from the symmetry of f in x and y and from the analysis we just
carried out that the candidates on this segment are

f (0, 0) = 2, f (0, 9) = −61, f (0, 1) = 3.

(iii) We have already accounted for the values of f at the endpoints of
AB, so we need only look at the interior points of AB. With y = 9− x ,
we have

f (x , y) = 2 + 2x + 2(9− x)− x2 − (9− x)2 = −61 + 18x − 2x2.
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Solution (contd...)

Setting f ′(x , 9− x) = 18− 4x = 0 gives

x =
18

4
=

9

2
.

At this value of x ,

y = 9− 9

2
=

9

2
and f (x , y) = f

(
9

2
,

9

2

)
= −41

2
.

Summary : We list all the candidates : 4, 2,−61, 3,−(41/2).

The maximum is 4, which f assumes at (1, 1).

The minimum is −61, which f assumes at (0, 9) and (9, 0).
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Example

Solving extreme value problems with algebraic constraints on the variables
usually requires the method of Lagrange multipliers introduced in the next
section. But sometimes we can solve such problems directly, as in the next
example.

Example 11.

A delivery company accepts only rectangular boxes the sum of whose
length and girth (perimeter of a cross-section) does not exceed 108 in.
Find the dimensions of an acceptable box of largest volume.

Solution : Let x , y , and z represent the length, width, and height of the
rectangular box, respectively. Then the girth is 2y + 2z . We want to
maximize the volume V = xyz of the box satisfying x + 2y + 2z = 108
(the largest box is accepted by the delivery company).
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Solution (contd...)

Thus, we can write the volume of the box as a function of two variables:

V (y , z) = (108− 2y − 2z)yz V=xyz and
x=108 - 2y - 2z

= 108yz − 2y2z − 2yz2.
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Solution (contd...)

Setting the first partial derivatives equal to zero,

Vy (y , z) = 108z − 4yz − 2z2 = (108− 4y − 2z)z = 0

Vz(y , z) = 108y − 2y2 − 4yz = (108− 2y − 4z)y = 0,

gives the critical points (0, 0), (0, 54), (54, 0), and (18, 18). The volume is
zero at (0, 0), (0, 54), (54, 0), which are not maximum values. At the point
(18, 18), we apply the Second Derivative Test :

Vyy = −4z , Vzz = −4y , Vyz = 108− 4y − 4z .

Then

VyyVzz − Vyz
2 = 16yz − 16(27− y − z)2.
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Solution (contd...)

Thus,

Vyy (18, 18) = −4(18) < 0

and

[VyyV6zz − Vyz
2](18,18) = 16(18)(18)− 16(−9)2 > 0

imply that (18, 18) gives a maximum volume.

The dimensions of the package are x = 108− 2(18)− 2(18) = 36 in.,
y = 18 in., and z = 18in.

The maximum volume is V = (36)(18)(18) = 11, 664 in3, or 6.75 ft3.
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Summary of Max-Min Tests

Despite the power of Theorem (7), we urge you to remember its
limitations. It does not apply to boundary points of a function’s domain,
where it is possible for a function to have extreme values along with
nonzero derivatives. Also, it does not apply to points where either fx or fy
fails to exist.

The extreme values of f (x , y) can occur only at

i) boundary points of the domain of f

ii) critical points (interior points where fx = fy = 0 or points where fx
or fy fails to exist).
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Summary of Max-Min Tests

If the first-and second-order partial derivatives of f are continuous
throughout a disk centered at a point (a, b) and fx(a, b) = fy (a, b) = 0,
the nature of f (a, b) can be tested with the Second Derivative Test:

i) fxx < 0 and fxx fyy − fxy
2 > 0 at (a, b) =⇒ local maximum

ii) fxx > 0 and fxx fyy − fxy
2 > 0 at (a, b) =⇒ local minimum

iii) fxx fyy − fxy
2 < 0 at (a, b) =⇒ saddle point

iv) fxx fyy − fxy
2 = 0 at (a, b) =⇒ test is inconclusive
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Extreme Values on Parametrized Curves

To find the extreme values use of a function f (x , y) on a curve
x = x(t), y = y(t), we treat f as a function of the single variable t and use
the Chain Rule to find where df /dt is zero. As in any other single-variable
case, the extreme values of f are then found among the values at the

(a) critical points (points where df /dt is zero or fails to exist), and

(b) endpoints of the parameter domain.
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Least squares and regression lines

When we try to fit a line y = mx + b to a set of numerical data points
(x1, y1), (x2, y2), . . . , (xn, yn), we usually choose the line that minimizes the
sum of the squares of the vertical distances from the points to the line. In
theory, this means finding the values of m and b that minimize the value
of the function

w = (mx1 + b − y1)2 + · · ·+ (mxn + b − yn)2. (1)

To fit a line to noncollinear points, we choose the line that minimizes the
sum of the squares of the deviations.
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Least squares and regression lines

One can show that the values of m and b that do this are

m =
(
∑

xk)(
∑

yk)− n
∑

xkyk
(
∑

xk)2 − n
∑

xk2
,

b =
1

n

(∑
yk −m

∑
xk

)
,

with all sums running from k = 1 to k = n.

Many scientific calculators have these formulas built in, enabling you to
find m and b with only a few keystrokes after you have entered the data.
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Least squares and regression lines

The line y = mx + b determined by these values of m and b is called the
least squares line, regression line, or trend line for the data under
study. Finding a least squares line lets you

1. summarize data with a simple expression,

2. predict values of y for other, experimentally untried values of x ,

3. handle data analytically.
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Exercises

Exercise 12.

Find all the local maxima, local minima, and saddle points of the following
functions.

1. f (x , y) = 2xy − 5x2 − 2y2 + 4x + 4y − 4

2. f (x , y) = 2xy − x2 − 2y2 + 3x + 4

3. f (x , y) = x2 − 2xy + 2y2 − 2x + 2y + 1

4. f (x , y) = x2 − y2 − 2x + 4y + 6

5. f (x , y) = x2 + 2xy

6. f (x , y) =
√

56x2 − 8y2 − 16x − 31 + 1− 8x

7. f (x , y) = x3 + 3xy2 − 15x + y3 − 15y

8. f (x , y) = 1
x2+y2−1

9. f (x , y) = ey − yex

10. f (x , y) = 2 ln x + ln y − 4x − y
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Solution for (1.), (2.) and (3.) in Exercise 12

1. fx(x , y) = 2y − 10x + 4 = 0 and fy (x , y) = 2x − 4y + 4 = 0⇒ x =
2
3 and y = 4

3 ⇒ critical point is( 2
3 ,

4
3 ); fxx( 2

3 ,
4
3 ) = −10, fyy ( 2

3 ,
4
3 ) =

−4, fxy ( 2
3 ,

4
3 ) = 2⇒ fxx fyy − f 2

xy = 36 > 0 and fxx <

0⇒ local maximum of f ( 2
3 ,

4
3 ) = 0

2. fx(x , y) = 2y − 2x + 3 = 0 and fy (x , y) = 2x − 4y = 0⇒ x =
3 and y = 3

2 ⇒ critical point is (3, 3
2 ); fxx(3, 3

2 ) = −2, fyy (3, 3
2 ) =

−4, fxy (3, 3
2 ) = 2⇒ fxx fyy − f 2

xy = 4 > 0 and fxx < 0⇒
local maximum of f (3, 3

2 ) = 17
2

3. fx(x , y) = 2x − 2y − 2 = 0 and fy (x , y) = −2x + 4y + 2 = 0⇒ x =
1 and y = 0⇒ critical point is(1, 0); fxx(1, 0) = 2, fyy (1, 0) =
4, fxy (1, 0) = −2⇒ fxx fyy − f 2

xy = 4 > 0 and fxx > 0⇒
local minimum off (1, 0) = 0

P. Sam Johnson Extreme Values and Saddle Points 45/81



Solution for (4.), (5.) and (6.) in Exercise 12

4. fx(x , y) = 2x − 2 = 0 and fy (x , y) = −2y + 4 = 0⇒ x = 1 and y =
2⇒ critical point is(1, 2); fxx(1, 2) = 2, fyy (1, 2) = −2, fxy (1, 2) =
0⇒ fxx fyy − f 2

xy = −4 < 0⇒ saddle point

5. fx(x , y) = 2x + 2y = 0 and fy (x , y) = 2x = 0⇒ x = 0 and y = 0⇒
critical point is(0, 0); fxx = 2, fyy (0, 0) = 0, fxy (0, 0) = 2⇒
fxx fyy − f 2

xy = −4 < 0⇒ saddle point

6. fx(x , y) = 112x−8x√
56x2−8y2−16x−31

− 8 = 0 and fy (x , y) =

−8y√
56x2−8y2−16x−31

= 0⇒ critical point is( 16
7 , 0); fxx( 16

7 , 0) =

− 8
15 , fyy ( 16

7 , 0) = − 8
15 , fxy ( 16

7 , 0) = 0⇒ fxx fyy − f 2
xy = 64

225 >

0 and fxx < 0⇒ local maximum of f ( 16
7, 0) = −16

7
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Solution for (7.) in Exercise 12

7. fx (x , y) = 3x2 + 3y2 − 15 = 0 and fy (x , y) = 6xy + 3y2 − 15 = 0⇒
critical point are(2, 1), (−2,−1), (0,

√
5), and (0,

√
5); for (2, 1); fxx (2, 1) = 6x |(2,1) =

12, fyy (2, 1) = (6x + 6y)|(2,1) = 18, fxy (2, 1) = 6y |(2,1) = 6⇒ fxx fyy − f 2
xy = 180 >

0 and fxx > 0⇒ local minimum of f (2, 1) = −30; for(−2,−1) : fxx (−2,−1) =
6x |(−2,−1) = −12, fyy (−2,−1) = (6x + 6y)|(−2,−1) = −18, fxy (−2,−1) = 6y |(− 2,−1) =

−6⇒ fxx fyy − f 2
xy = 180 > 0 and fxx < 0⇒ local minimum off (−2,−1) =

30; for (0,
√

5) : fxx (0,
√

5) = 6x |(0,
√

5) = 0, fyy (0,
√

5) = (6x + 6y)|(0,
√

5) =

6
√

5, fxy (0,
√

5) = 6y |(0,
√

5) = 6
√

5⇒ fxx fyy − f 2
xy = −180 < 0⇒ saddle point; for (0),

for
(

0,
√

5
)

; fxx
(

0,−
√

5
)

= 6x |(0,−
√

5) = 0, fyy (0,
√

5) = (6x + 6y)|(0,
√

5) = −6
√

5,

fxy (0,−
√

5) = 6y |(0,−
√

5) = −6
√

5⇒ fxx fxy − f 2
xy = −180 < 0⇒ saddle point
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Solution for (8.), (9.) and (10.) in Exercise 12

8. fx(x , y) = −2x
(x2+y2−1)2 = 0 and fy (x , y) = −2y

(x2+y2−1)2 = 0⇒ x =

0 and y = 0⇒ the critical point is(0, 0); fxx = 4x2−2y2+2
(x2+y2−1)2 , fyy =

−2x2+4y2+2
(x2+y2−1)2 , fxy = 8xy

(x2+y2−1)2 ; fxx(0, 0) = −2, fyy (0, 0) =

−2, fxy (0, 0) = 0⇒ fxx fyy − f 2
xy = 4 > 0 and fxx < 0⇒

local maximum of f (0, 0) = −1

9. fx(x , y) = −yex = 0 and fy (x , y) = ey − ex = 0⇒
critical pint is(0, 0); fxx(2, 0) = 0, fxy (2, 0) = −1, fyy (2, 0) = 1⇒
fxx fyy − f 2

xy = −1 < 0⇒ saddle point

10. fx(x , y) = −4 + 2
x = 0 and fy (x , y) = −1 + 1

y = 0⇒
critical point is( 1

2 , 1); fxx( 1
2 , 1) =; fxx( 1

2 , 1) = −8, fyy ( 1
2 , 1) =

−1, fxy ( 1
2 , 1) = 0⇒ fxx fyy − f 2

xy = 8 > 0 and fxx < 0⇒
local maximum of f ( 1

2 , 1) = −3− 2 ln 2

P. Sam Johnson Extreme Values and Saddle Points 48/81



Finding Absolute Extrema

Exercise 13.

Find the absolute maxima and minima of the functions of the given
domains.

1. f (x , y) = 2x2 − 4x + y2 − 4y + 1 on the closed triangular plate
bounded by the lines x = 0, y = 2, y = 2x in the first quadrant.

2. D(x , y) = x2 − xy + y2 + 1 on the closed triangular plate in the first
quadrant bounded by the lines x = 0, y = 4, y = x .

3. T (x , y) = x2 + xy + y2 − 6x + 2 on the rectangular plate 0 ≤ x ≤ 5,
−3 ≤ y ≤ 0.
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Solution for (1.) in Exercise 13

(i) On OA,f (x , y) = f (0, y) = y2 − 4y + 1 on 0 ≤ y ≤ 2; f ′(0, y) = 2y − 4 = 0⇒ y = 2;
f (0, 0) = 1 and f (0, 2) = −3

(ii) On AB, f (x , y) = f (x , 2) = 2x2 − 4x − 3 on 0 ≤ x ≤ 1; f ′(x , 2) = 4x − 4 = 0⇒ x = 1;
f (0, 2) = −3 and f (1, 2) == −5

(iii) On OB, (x , y) = f (x , 2x) = 6x2 − 12x + 1 on 0 ≤ x ≤ 1; endpoint values have been
found above; f ′(x , 2x) = 12x − 12 = 0⇒ x = 1 and y = 2, but (1, 2) is not an interior
point of OB

(iv) For interior point of the triangular region,
fx (x , y) = 4x − 4 = 0 and fy (x , y) = 2y − 4 = 0⇒ x = 1 and y = 2, but (1, 2) is not an
interior point of the region. Therefore, the absolute maximum is 1 at (0, 0) and the
absolute minimum is −5 at (1, 2).
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Solution for (2.) in Exercise 13

(i) On OA,D(x , y) = D(0, y) = y2 + 1 on 0 ≤ y ≤ 4;D′(0, y) = 2y = 0⇒ y = 0;D(0, 0) =
1 and D(0, 4) = 17

(ii) On AB,D(x , y) = D(x , 4) = x2 − 4x + 17 on 0 ≤ x ≤ 4;D′(x , 4) = 2x − 4 = 0⇒ x =
2 and (2, 4) is an interior point of AB;D(2, 4) = 13 and D(4, 4) = D(0, 4) = 17

(iii) On OB,D(x , y) = D(x , x) = x2 + 1 on 0 ≤ x ≤ 4;D′(x , x) = 2x = 0⇒ x = 0 and y = 0,
which is not an interior point of OB; endpoint values have been found above

(iv) For interior points of the triangular region, fx (x , y) = 2x − y = 0 and
fy (x , y) = −x + 2y = 0⇒ x = 0 and y = 0, which is not an interior point of the region.
Therefore, the absolute maximum is 17 at (0, 4) and (4, 4), and the absolute minimum is
1 t(0, 0).
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Solution for (3.) in Exercise 13

(i) on OC ,T (x , y) = T (x , 0) = x2 − 6x + 2 on 0 ≤ x ≤ 5;T ′(x , 0) = 2x − 6 = 0⇒ x = 3
and y = 0;T (3, 0) = −7,T (0, 0) = 2, and T (5, 0) = −3

(ii) On CB,T (x , y) = T (5, y) = y2 + 5y − 3 on
−3 ≤ y ≤ 0;T ′(5, y) = 2y + 5 = 0⇒ y = − 5

2
and x = 5;T (5,− 5

2
) = − 37

4
and

T (5,−3) = −9
(iii) On AB,T (x , y) = T (x − 3) = x2 − 9x + 11 on

0 ≤ x ≤ 5;T ′(x ,−3) = 2x − 9 = 0⇒ x = 9
2

and y = −3;T
(

9
2
,−3

)
= − 37

4
and

T (0,−3) = 11
(iv) On AO,T (x , y) = T (0, y) = y2 + 2 on −3 ≤ y ≤ 0;T ′(0, y) = 2y = 0⇒ y = 0 and

x = 0, but (0, 0) is not an interior point of AO.
(v) For interior points of the rectangular region, Tx (x , y) = 2x + y − 6 = 0 and

Ty (x , y) = x + 2y = 0⇒ x = 4 and y = −2, an interior critical point with
T (4,−2) = −10. Therefore the absolute maximum is 11 at (0,−3) and the absolute
minimum is −10 at (4,−2).
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Finding Absolute Extrema

Exercise 14.

Find the absolute maxima and minima of the functions of the given
domains.

1. f (x , y) = (4x − x2) cos y on the rectangular plate 1 ≤ x ≤ 3,
−π/4 ≤ y ≤ π/4 (see accompanying figure).

2. f (x , y) = 4x − 8xy + 2y + 1 on the triangular plate bounded by the
lines x = 0, y = 0, x + y = 1 in the first quadrant.
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Solution for (1.) in Exercise 14

(i) On AB, f (x , y) = f (1, y) = 3 cos y on − π
4
≤ y ≤ π

4
; f ′(1, y) = −3 sin y = 0⇒ y =

0 and x = 1; f (1, 0) = 3, f (1,−π
4

) = 3
√

2
2
, and f (1, π

4
) = 3

√
2

2
.

(ii) On CD, f (x , y) = f (3, y) = 3 cos y on − π
4
≤ y ≤ π

4
; f ′(3, y) = −3 sin y = 0⇒ y =

0 and x = 3; f (3, 0) = 3, f (3,−π
4

) = 3
√

2
2

and f (3, π
4

) = 3
√

2
2

(iii) On BC , f (x , y) = f (x , π
4

) =
√

2
2

(4x − x2) on 1 ≤ x ≤ 3; f ′(x , π
4

) =
√

2(2− x) = 0⇒
x = 2 and y = π

4
; f (2, π

4
) = 2

√
2, f (1, π

4
) = 3

√
2

2
, and f (3, π

4
) = 3

√
2

2

(iv) On AD, f (x , y) = f (x ,−π
4

) =
√

2
2

(4x − x2) on 1 ≤ x ≤ 3; f ′(x ,−π
4

) =
√

2(2− x) = 0⇒
x = 2 and y = −π

4
; f (2,−π

4
) = 2

√
2, f (1,−π

4
) = 3

√
2

2
, and f (3,−π

4
) = 3

√
2

2

(v) For interior point of the region,
fx (x , y) = (4− 2x) cos y = 0 and fy (x , y) = −(4x − x2) sin y = 0⇒ x = 2 and y = 0,
which is an interior critical point with f (2, 0) = 4. Therefore the absolute maximum is 4

at (2, 0) and the absolute minimum is 3
√

2
2

at (3,−π
4

), (3, π
4

), (1,−π
4

), and (1, π
4

).
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Solution for (2.) in Exercise 14

(i) On OA, f (x , y) = f (0, y) = 2y + 1 on 0 ≤ y ≤ 1; f ′(0, y) = 2⇒ no interior critical
points, f (0, 0) = 1 and f (0, 1) = 3

(ii) On OB, f (x , y) = f (x , 0) = 4x + 1 on 0 ≤ x ≤ 1; f ′(x , 0) = 4⇒no interior critical
points; f (1, 0) = 5

(iii) On AB, f (x , y) = f (x ,−x + 1) = 8x2 − 6x + 3 on 0 ≤ x ≤ 1; f ′(x ,−x + 1) = 16x − 6 =
0⇒ x = 3

8
and y = 5

8
; f ( 3

8
, 5

8
) = 15

8
, f (0, 1) = 3, and f (1, 0) = 5

(iv) For interior points of the triangular region,
fx (x , y) = 4− 8y = 0 and fy (x , y) = −8x + 2 = 0⇒ y = 1

2
and x = 1

4
which is an

interior critical point with f ( 1
4
, 1

2
) = 2. Therefore the absolute maximum is 5 at (1, 0) and

the absolute minimum is 1 at (0, 0).
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Finding Absolute Extrema

Exercise 15.

Find the absolute maxima and minima of the functions of the given
domains.

1. Find two numbers a and b with a ≤ b such that∫ b

a
(6− x − x2)dx

has its largest value.

2. Find two numbers a and b with a ≤ b such that∫ b

a
(24− 2x − x2)1/3dx

has its largest value.
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Solution for Exercise 15

1. Let F (a, b) =
∫ 0
a (6− x − x2)dx where a ≤ b. The boundary of the domain of F is the line

a = b in the ab-plane, and F (a, a) = 0, so F is identically 0 on the boundary of its
domain. For interior critical points we have:
δF
δa

= −(6− a− a2) = 0⇒ a = −3, 2 and δf
δb

= (6− b − b2) = 0⇒ b = −3, 2. Since

a ≤ b, there is only one interior critical point (−3, 2) and f (−3, 2) =
∫ 2
−3(6− x − x2)dx

gives the area under the parabola y = 6− x − x2 that is above the x-axis. Therefore,
a = −3 and b = 2.

2. Let F (a, b) =
∫ 0
a (24− 2x − x2)1/3dx where a ≤ b. The boundary of the domain of F is

the line a = b and on this line F is identically 0. For interior critical points we have:
δF
δa

= −(24− 2a− a2)1/3 = 0⇒ a = 4,−6 and
δf
δb

= (24− 2b − b2)1/3 = 0⇒ b = 4,−6. Since a ≤ b, there is only one critical point

(−6, 4) and F (−6, 4) =
∫ 4
−6(24− 2x − x2)dx gives the area under the curve

y = (24− 2x − x2)1/3 that is above the x-axis. Therefore , a = −6 and b = 4.
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Exercises

Exercise 16.

1. Temperatures : A flat circular plate has the shape of the region
x2 + y2 ≤ 1. The plate, including the boundary where x2 + y2 = 1, is
heated so that the temperature at the point (x , y) is

T (x , y) = x2 + 2y2 − x .

Find the temperatures at the hottest and coldest points on the plate.

2. Find the critical point of

f (x , y) = xy + 2x − ln x2y

in the open first quadrant (x > 0, y > 0) and show that f takes on a
minimum there.
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Solution for Exercise 16

1. Tx(x , y) = 2x − 1 = 0 and Ty (x , y) = 4y = 0⇒ x = 1
2 and y =

0 with T ( 1
2 , 0) = −1

4 ; on the boundary
x2 + y2 = 1 : T (x , y) = −x2 − x + 2 for − 1 ≤ x ≤ 1⇒ T ′(x , y) =

−2x − 1 = 0⇒ x = −1
2 and y = ±

√
3

2 ;T
(
−1

2 ,
√

3
2

)
=

9
4 ,T

(
−1

2 ,−
√

3
2

)
= 9

4 ,T (−1, 0) = 2, and T (1, 0) = 0⇒ the hottest

id 2 1
4

◦
at
(
−1

2 ,
√

3
2

)
and

(
−1

2 ,−
√

3
2

)
; the coldest is −1

4

◦
at ( 1

2 , 0).

2. fx(x , y) = y + 2− 2
x and fy (x , y) = x − 1

y = 0⇒ x = 1
2 and y =

2; fxx( 1
2 , 2) = 2

x2 |( 1
2
,2) = 8, fyy ( 1

2 , 2) = 1
y2 = 1

y2 |( 1
2
,2) = 1

4 , fxy ( 1
2 , 2) =

1⇒ fxx fyy − f 2
xy = 1 > 0 and fxx > 0⇒ a local minimum of

f ( 1
2 , 2) = 2− ln 1

2 = 2 + ln 2
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Exercises

Exercise 17.

Find the maxima, minima, and saddle points of f (x , y), if any, given that

(a) fx = 2x − 4y and fy = 2y − 4x

(b) fx = 2x − 2 and fy = 2y − 4

(c) fx = 9x2 − 9 and fy = 2y + 4

Describe your reasoning in each case.
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Solution for Exercise 17

(a) fx(x , y) = 2x − 4y = 0 and fy (x , y) = 2y − 4x = 0⇒ x = 0 and y =
0; fxx(0, 0) = 2, fyy (0, 0) = 2, fxy (0, 0) = −4⇒ fxx fyy − f 2

xy = −12 <
0⇒ saddle point at(0, 0)

(b) fx(x , y) = 2x − 2 = 0 and fy (x , y) = 2y − 4 = 0⇒ x = 1 and y =
2; fxx(1, 2) = 2, fyy (1, 2) = 2, fxy (1, 2) = 0⇒ fxx fyy − f 2

xy = 4 >
0 and fxx > 0⇒ local minimum at (1, 2)

(c) fx(x , y) = 9x2 − 9 and fy (x , y) = 2y + 4 = 0⇒ x = ±1 andy =
−2; fxx(1,−2) = 18x |(1,−2) = 18, fyy (1,−2) = 2, fxy (1,−2) = 0⇒
fxx fyy − f 2

xy = 36 > 0 and fxx > 0⇒
local minimum at(1,−2); fxx(−1,−2) = −18, fyy (−1,−2) =
2, fxy (−1,−2) = 0⇒ fxx fyy − f 2

xy = −36 < 0⇒ saddle point at
(−1,−2)
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Exercises

Exercise 18.

The discriminant fxx fyy − fxy
2 is zero at the origin for each of the following

functions, so the Second Derivative Test fails there. Determine whether
the function has a maximum, a minimum, or neither at the origin by
imagining what the surface z = f (x , y) looks like. Describe your reasoning
in each case.

(a) f (x , y) = x2y2

(b) f (x , y) = 1− x2y2

(c) f (x , y) = xy2

(d) f (x , y) = x3y2

(e) f (x , y) = x3y3

(f) f (x , y) = x4y4
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Solution for Exercise 18

(a) Minimum at (0, 0) since f (x , y) > 0 for all other (x , y)

(b) Maximum of 1 at (0, 0) since f (x , y) < 1 for all other (x , y)

(c) Neither since f (x , y) < 0 for x < 0 and f (x , y) > 0 for x > 0

(d) Neither since f (x , y) < 0 for x < 0 and f (x , y) > 0 for x > 0

(e) Neither since f (x , y) < 0 for x < 0 and y > 0, but f (x , y) > 0 for
x > 0 and y > 0

(f) Minimum at (0, 0) since f (x , y) > 0 for all other (x , y)
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Exercises

Exercise 19.

1. Show that (0, 0) is a critical point of f (x , y) = x2 + kxy + y2 no
matter what value the constant k has. (Hint : Consider two cases:
k = 0 and k 6= 0.)

2. For what values of the constant k does the Second Derivative Test
guarantee that f (x , y) = x2 + kxy + y2 will have a saddle point at
(0, 0)? A local minimum at (0, 0)? For what values of k is the
Second Derivative Test inconclusive? Give reasons for your answers.

3. If fx(a, b) = fy (a, b) = 0, must f have a local maximum or minimum
value at (a, b)? Give reasons for your answer.
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Solution for Exercise 19

1. If k = 0, then f (x , y) = x2 + y2 ⇒ fx(x , y) = 2x = 0 and fy (x , y) =
2y = 0⇒ x = 0 and y = 0⇒ (0, 0) is the only critical point. If
k 6= 0, fx(x , y) = 2x + ky = 0⇒ y = − 2

k x ; fy (x , y) = kx + 2y = 0⇒
kx + 2(− 2

k x) = 0⇒ kx − 4x
k = 0⇒ (k − 4

k )x = 0⇒ x = 0 or k =
±2⇒ y = (− 2

k )(0) = 0 or y = ±x ; in any case(0, 0) is a critical
point.

2. (see the Exercise above): fxx(x , y) = 2, fyy (x , y) = 2, and fxy (x , y) =
k ⇒ fxx fyy − f 2

xy = 4− k2; f will have a saddle point at
(0, 0) if 4− k2 < 0⇒ k > 2 or k < −2; f will have a local minimum
at(0, 0) if 4− k2 > 0⇒ −2 < k < 2; the test is inconclusive if
4− k2 = 0⇒ k = ±2.

3. No; for example f (x , y) = xy has a saddle point at (a, b) = (0, 0)
where fx = fy = 0.
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Exercises

Exercise 20.

1. Can you conclude anything about f (a, b) if f and its first and second
partial derivatives are continuous throughout a disk centered at the
critical point (a, b) and fxx(a, b) and fyy (a, b) differ in sign? Give
reasons for your answer.

2. Among all the points on the graph of z = 10− x2 − y2 that lie above
the plane x + 2y + 3z = 0, find the point farthest from the plane.

3. Find the point on the graph of z = x2 + y2 + 10 nearest the plane
x + 2y − z = 0.

4. Find three positive numbers whose sum is 3 and whose product is a
maximum.
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Solution for Exercise 20

1. If fxx (a, b) and fyy (a, b) differ in sign, then fxx (a, b)fyy (a, b) < 0 so fxx fyy − f 2
xy < 0. The

surface must therefore have a saddle point at (a, b) by the second derivative test.

2. We want the point on z = 10− x2 − y2 where the tangent plane is parallel to the plane
x + 2y + 3z = 0. To find a normal vector to z = 10− x2 − y2 let w = z + x2 + y2 − 10.
Then Ow = 2xi + 2yj + k is normal to z = 10− x2 − y2 at (x , y). The vector Ow is
parallel to i + 2j + 3k which is normal to the plane x + 2y + 3z = 0 if
6xi + 6yj + 3k = i + 2j + 3k or x = 1

6
and y = 1

3
. Thus the point is

( 1
6
, 1

3
, 10− 1

36
,− 1

9
) or ( 1

6
, 1

3
, 355

36
).

3. We want the point on z = x2 + y2 + 10 where the tangent plane is parallel to the plane
x + 2y − z = 0. Let w = z − x2 − y2 − 10, then Ow = −2xi − 2yj + k is normal to
z = x2 + y2 + 10 at (x , y). The vector Ow is parallel to i + 2j − k which is normal to the
plane if x = 1

2
and y = 1. Thus the point ( 1

2
, 1, 1

4
+ 1 + 10) or ( 1

2
, 1, 45

4
) is the point on

the surface z = x2 + y2 + 10 nearest the plane x + 2y − z = 0.

4. p(x , y , z) = xyz; x + y + z = 3⇒ z = 3− x − y ⇒ p(x , y) = xy(3− x − y) =
3xy − x2y − xy2 ⇒ Px (x , y) = 3y − 2xy − y2 = 0 and py (x , y) = 3x − x2 − 2xy = 0⇒
critical points are(0, 0), (0, 3), (3, 0), and (1, 1); for (0, 0)⇒ z = 3; pxx (0, 0) =
0, pyy (0, 0) = 0, pxy (0, 0) = 3⇒ pxxpyy − p2

xy = −9 < 0⇒ saddle point; for (0, 3)⇒ z =

0; pxx (0, 3) = −6, pyy (0, 3) = 0, pxy (0, 3) = −3⇒ pxxpyy − p2
xy = −9 < 0⇒

saddle point; for (3, 0)⇒ z = 0; pxx (3, 0) = 0, pyy (3, 0) = −6, pxy (3, 0) = −3⇒
pxxpyy − p2

xy = −9 < 0⇒ saddle point; for (1, 1)⇒ z = 1; pxx (1, 1) = −2, pyy (1, 1) =

−2, pxy (1, 1) = −1⇒ pxxpyy − p2
xy = 3 > 0 and pxx < 0⇒local maximum

of p(1, 1, 1) = 1
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Exercises

Exercise 21.

1. Find the dimensions of the rectangular box of maximum volume that
can be inscribed inside the sphere x2 + y2 + z2 = 4.

2. Consider the function f (x , y) = x2 + y2 + 2xy − x − y + 1 over the
square 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

(a) show that f has an absolute minimum along the line segment
2x + 2y = 1 in this square. What is the absolute minimum value?

(b) Find the absolute maximum value of f over the square.
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Solution for (1.) in Exercise 21

1. V (x , y , z) = (2x)(2y)(2z) = 8xyz; x2 + y2 + z2 = 4⇒ z =
√

4− x2 − y2 ⇒ V (x , y) =

8xy
√

4− x2 − y2,x ≥ 0andy ≥ 0⇒ Vx (x , y) = 32y−16x2y−8y3
√

4−x2−y2
= 0 and Vy (x , y) =

32x−16xy2−8x3
√

4−x2−y2
= 0⇒critical points

are(0, 0),
(

2√
3
, 2√

3

)
,
(

2√
3
,− 2√

3

)
,
(
− 2√

3
, 2√

3

)
, and

(
− 2√

3
,− 2√

3

)
. only (0, 0) and

(
2√
3
, 2√

3

)
satisfy x ≥

0 and y ≥ 0V (0, 0) = 0 and V
(

2√
3
, 2√

3

)
= 64

3
√

3
; on x = 0, 0 ≤ y ≤ 2⇒ V (0, y) =

8(0)y
√

4− 02 − y2 = 0, no critical points,

V (0, 0) = 0,V (0, 2) = 0; on y = 0, 0 ≤ x ≤ 2⇒ V (x , 0) = 8x(0)
√

4− x2 − 02 = 0,no
critical points, V (0, 0) = 0,V (0, 2) = 0; on y =

√
4− x2, 0 ≤ x ≤ 2⇒

V (x −
√

4− x2) = 8x
√

4− x2

√
4− x2 − (

√
4− x2)2 = 0 no critical points,

V (0, 2) = 0,V (2, 0) = 0. Thus, there is a maximum volume of 64
3
√

3
if the box is

2√
3
× 2√

3
× 2√

3
.
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Solution for (2.) in Exercise 21

2. (a) (i) On x = 0, f (x , y) = f (0, y) = y 2 − y + 1 for 0 ≤ y ≤ 1;
f ′(0, y) = 2y − 1 = 0⇒ y = 1

2
and x = 0; f (0, 1

2
) = 3

4
, f (0, 0) = 1,

and f (0, 1) = 1
(ii) on y = 1, f (x , y) = f (x , 1) = x2 + x + 1 for 0 ≤ x ≤ 1;

f ′(x , 1) = 2x + 1 = 0⇒ x = − 1
2
and y = 1, but

(
− 1

2
, 1
)
is outside the

domain; f (0, 1) = 1 and f (1, 1) = 3
(iii) On x = 1, f (x , y) = f (1, y) = y 2 + y + 1 for 0 ≤ y ≤ 1;

f ′(1, y) = 2y + 1 = 0⇒ y = − 1
2
and x = 1, but

(
1,− 1

2

)
is outside the

domain; f (1, 0) = 1 and f (1, 1) = 3
(iv) On y = 0, f (x , y) = f (x , 0) = x2 − x + 1 for 0 ≤ x ≤ 1;

f ′(x , 0) = 2x − 1 = 0⇒ x = 1
2
and y = 0; f ( 1

2
, 0) = 3

4
; f (0, 0) = 1,

and f (1, 0) = 1
(v) On the interior of the square, fx(x , y) = 2x + 2y − 1 = 0 and

fy (x , y) = 2y + 2x − 1 = 0⇒ 2x + 2y = 1⇒ (x + y) = 1
2
. Then

f (x , y) = x2 + y 2 + 2xy − x − y + 1 = (x + y)2 − (x + y) + 1 = 3
4
is

the absolute minimum value when 2x + 2y = 1.

(b) The absolute maximum is f (1, 1) = 3.
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Exercises

Exercise 22.

Find the absolute maximum and minimum values of the following
functions on the given curves.

Functions :

(a) f (x , y) = 2x + 3y

(b) g(x , y) = xy

(c) h(x , y) = x2 + 3y2

Curves :

(i) The semiellipse (x2/9) + (y2/4) = 1, y ≥ 0

(ii) The quarter ellipse (x2/9) + (y2/4) = 1, x ≥ 0, y ≥ 0

Use the parametric equations x = 3 cos t, y = 2 sin t.
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Solution for (a.) in Exercise 22

(a) df
dt = ∂f

∂x
dx
dt + ∂f

∂y
dy
dt = 2dx

dt + 3dy
dt = −6 sin t + 6 cos t = 0⇒ sin t =

cos t ⇒ t = π
4 for 0 ≤ t ≤ π.

(i) On the semi-ellipse, x2

9 + y2

4 = 1, y ≥ 0,

f (x , y) = 2x + 3y = 6 cos t + 6 sin t = 6
(√

2
2

)
+ 6

(√
2

2

)
= 6
√

2 at

t = π
4 . At the endpoints, f (−3, 0) = −6 and f (3, 0) = 6. The absolute

minimum is f (−3, 0) = −6 when t = π; the absolute maximum is

f
(

3
√

2
2 ,
√

2
)

= 6
√

2 when t = π
4 .

(ii) On the quarter ellipse, at the endpoints f (0, 2) = 6 and f (3, 0) = 6.
The absolute minimum is f (3, 0) = 6 and f (0, 2) = 6 when t = 0, π2
respectively; the absolute maximum is f

(
3
√

2
2 ,
√

2
)

= 6
√

2 when

t = π
4 .
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Solution for (b.) in Exercise 22

(b) dg
dt = ∂g

∂x
dx
dt + ∂g

∂y
dy
dt = y dx

dt + x dy
dt = (2 sin t)(−3 sin t) +

(3 cos t)(2 cos t) = 6(cos2 t − sin2 t) = 6 cos 2t = 0⇒ t = π
4 ,

3π
4 for

0 ≤ t ≤ π.

(i) On the semi-ellipse, g(x , y) = xy = 6 sin t cos t. Then

g
(

3
√

2
2 ,
√

2
)

= 3 when t = π
4 , and g

(
− 3
√

2
2 ,
√

2
)

= −3 when t = 3π
4 .

At the endpoints, g(−3, 0) = g(3, 0) = 0. The absolute minimum is

g
(
− 3
√

2
2 ,
√

2
)

= −3 when t = 3π
4 ; the absolute maximum is

g
(

3
√

2
2 ,
√

2
)

= 3 when t = π
4 .

(ii) On the quarter ellipse, at the endpoints g(0, 2) = 0 and g(3, 0) = 0.
The absolute minimum is g(3, 0) = 0 and g(0, 2) = 0 at t = 0, π2
respectively; the absolute maximum is g

(
3
√

2
2 ,
√

2
)

= 3 when t = π
4 .
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Solution for (c.) in Exercise 22

(c) dh
dt = ∂h

∂x
dx
dt + ∂h

∂y
dy
dt = 2x dx

dt + 6y dy
dt =

(6 cos t)(−3 sin t) + (12 sin t)(2 cos t) = 6 sin t cos t = 0⇒ t = 0, π2 , π
for 0 ≤ t ≤ π, yielding the points (3, 0), (0, 2), and (−3, 0).

(i) On the semi-ellipse, y ≥ 0 so that h(3, 0) = 9, h(0, 2) = 12, and
h(−3, 0) = 9. The absolute minimum is h(3, 0) = 9 and h(−3, 0) = 9
when t = 0, π respectively; the absolute maximum is h(0, 2) = 12 when
t = π

2 .
(ii) On the quarter ellipse, the absolute minimum is h(3, 0) = 9 when

t = 0; the absolute maximum is h(0, 2) = 12 when t = π
2 .
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Exercises

Exercise 23.

Find the absolute maximum and minimum values of the following
functions on the given curves.

Functions :

(a) f (x , y) = x2 + y2

(b) g(x , y) = 1/(x2 + y2)

Curves :

(i) The line x = t, y = 2− 2t

(ii) The line segment x = t, y = 2− 2t, 0 ≤ t ≤ 1
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Solution for (a.) in Exercise 23

(a) df
dt

= ∂f
∂x

dx
dt

+ ∂f
∂y

dy
dt

= 2x dx
dt

+ 2y dy
dt

(i) x = t and y = 2− 2t ⇒ df
dt = (2t)(1) + 2(2− 2t)(−2) = 10t − 8 =

0⇒ t = 4
5 ⇒ x = 4

5 and y = 2
5 with f

(
4
5 ,

2
5

)
= 16

25 + 4
25 = 4

5 . The

absolute minimum is f
(

4
5 ,

2
5

)
= 4

5 when t = 4
5 ; there is no absolute

maximum along the line.
(ii) For the endpoints: t = 0⇒ x = 0 and y = 2 with f (0, 2) = 4;

t = 1⇒ x = 1 and y = 0 with f (1, 0) = 1. The absolute minimum is
f
(

4
5 ,

2
5

)
= 4

5 at the interior critical point when t = 4
5 ; the absolute

maximum is f (0, 2) = 4 at the endpoint when t = 0.
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Solution for (b.) in Exercise 23

(b) dg
dt

= ∂g
∂x

dx
dt

+ ∂g
∂y

dy
dt

=
[
−2x

(x2+y2)2

]
dx
dt

+
[
−2y

(x2+y2)2

]
dy
dt

(i) x = t and y = 2− 2t ⇒ x2 + y2 = 5t2 − 8t + 4⇒ dg
dt =

−(5t2 − 8t + 4)−2[(−2t)(1) + (−2)(2− 2t)(−2)] =
−(5t2 − 8t + 4)−2(−10t + 8) = 0⇒ t = 4

5 ⇒ x = 4
5 and y = 2

5 with
g
(

4
5 ,

2
5

)
= 1

( 4
5 )

= 5
4 . The absolute maximum is g

(
4
5 ,

2
5

)
= 5

4 when

t = 4
5 ; there is no absolute minimum along the line since x and y can

be as large as we please.
(ii) For the endpoints: t = 0⇒ x = 0 and y = 2 with g(0, 2) = 1

4 ;
t = 1⇒ x = 1 and y = 0 with g(1, 0) = 1. The absolute minimum is
g (0, 2) = 1

4 when t = 0; the absolute maximum is g( 4
5 ,

2
5 ) = 5

4 when
t = 4

5 .

P. Sam Johnson Extreme Values and Saddle Points 77/81



Exercises

Exercise 24.

Find the least squares line for each set of data points. Then use the linear
equation you obtain to predict the value of y that would correspond to
x = 4.

1. (−2, 0), (0, 2), (2, 3)

2. (−1, 2), (0, 1), (3,−4)
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Solution for Exercise 24

1. m = (0)(5)−3(6)

(0)2−3(8)
= 3

4
and b = 1

3

[
5− 3

4
(0)
]

= 5
3
⇒ y = 3

4
x + 5

3
; y |x=4 = 14

3

k xk yk x2
k xkyk

1 -2 0 4 0
2 0 2 0 0
3 2 3 4 6∑

0 5 8 6

2. m = (2)(−1)−3(−14)

(2)2−3(10)
= − 20

13
and

b = 1
3

[
−1−

(
− 20

3

)
(2)
]

= 9
13
⇒ y = − 20

13
x + 9

13
; y |x=4 = − 71

13

k xk yk x2
k xkyk

1 -1 2 1 -2
2 0 1 0 0
3 3 -4 9 -12∑

2 -1 10 -14
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Old Questions

Question 25.

The function f (x , y) = x2 + 4y2 − 2x + 8y − 1 for (x , y) ∈ R2 has

(A) local minimum at (1,−1)

(B) a saddle point at (1,−1)

(C) local maximum at (1,−1)

(D) None of the other options.

The correct answer is
local minimum at (1,−1).
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